在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=-k分别交于点A,B,直线x=k与直线y=-k交于点C.
(1)求直线l与y轴的交点坐标;
(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.
①当k=2时,结合函数图象,求区域W内的整点个数;
②若区域W内没有整点,直接写出k的取值范围.
如图,点 A 是数轴上表示实数 a 的点.
(1)用直尺和圆规在数轴上作出表示实数 2 的点 P ;(保留作图痕迹,不写作法)
(2)根据数轴比较 2 和 a 的大小,并说明理由.
已知抛物线 y = a ( x - 1 ) 2 + h 经过点 ( 0 , - 3 ) 和 ( 3 , 0 ) .
(1)求 a 、 h 的值;
(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.
先化简,再求值: ( 1 + 1 m - 1 ) ⋅ m 2 - 1 m ,其中 m = 2 .
解不等式组: 3 x - 1 ⩾ x + 1 4 x - 2 < x + 4 .
计算: ( 1 3 ) - 1 + ( 2 3 - 1 ) 0 - 4 .
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号