为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:
编号 |
① |
② |
③ |
④ |
⑤ |
⑥ |
⑦ |
⑧ |
⑨ |
⑩ |
⑪ |
⑫ |
⑬ |
⑭ |
⑮ |
尺寸 |
8.72 |
8.88 |
8.92 |
8.93 |
8.94 |
8.96 |
8.97 |
8.98 |
9.03 |
9.04 |
9.06 |
9.07 |
9.08 |
按照生产标准,产品等次规定如下:
尺寸(单位: |
产品等次 |
特等品 |
|
优等品 |
|
合格品 |
|
或 |
非合格品 |
注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.
(1)已知此次抽检的合格率为,请判断编号为⑮的产品是否为合格品,并说明理由.
(2)已知此次抽检出的优等品尺寸的中位数为.
求的值;
将这些优等品分成两组,一组尺寸大于,另一组尺寸不大于,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.
已知抛物线(
)与
轴相交于点
,顶点为
.直线
分别与
轴,
轴相交于
两点,并且与直线
相交于点
.
(1)填空:试用含的代数式分别表示点
与
的坐标,则
;
(2)如图,将沿
轴翻折,若点
的对应点
′恰好落在抛物线上,
′与
轴交于点
,连结
,求
的值和四边形
的面积;
(3)在抛物线(
)上是否存在一点
,使得以
为顶点的四边形是平行四边形?若存在,求出
点的坐标;若不存在,试说明理由.
将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90º,∠A=∠D=30º,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的△DBE绕点B按顺时针方向旋转角,且0º<
<60º,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角,且60º<
<180º,其他条件不变,如图③.你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF、EF与DE之间的关系,并说明理由.
某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)中所有方案获利相同,
值应是多少?此时,哪种方案对公司更有利?
某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.已知在图1中,组中值为190次一组的频率为0.12.(说明: 组中值为190次的组别为 180≤次数<200)
请结合统计图完成下列问题:
(1)八(1)班的人数是,组中值为110次一组的频率为;
(2)请把频数分布直方图补充完整;
(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级同学至少有多少人?
如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连结DE。
(1)当BD=3时,求线段DE的长;
(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.
求证:△FAE是等腰三角形.