平面内,如图,在中,,,,点为边上任意点,连接,将绕点逆时针旋转得到线段.
(1)当时,求的大小;
(2)当时,求点与点间的距离(结果保留根号);
(3)若点恰好落在的边所在的直线上,直接写出旋转到所扫过的面积.(结果保留
如图,已知反比例函数(k1>0)与一次函数
相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2 .
(1)求出反比例函数与一次函数的解析式;
(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?
如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)
(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.
解不等式组,在数轴上表示解集并求出它的整数解的和.
先化简,再求值,其中
.
(本题12分)如图,在平面直角坐标系中,已知OA=2,OC=4,⊙M与轴相切于点C,与
轴交于A,B两点,∠ACD=90°,抛物线
经过A,B,C三点.
(1)求证:∠CAO=∠CAD;
(2)求弦BD的长;
(3)在抛物线的对称轴上是否存在点P使ΔPBC是以BC为腰的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.