(本题12分)如图,在平面直角坐标系中,已知OA=2,OC=4,⊙M与轴相切于点C,与
轴交于A,B两点,∠ACD=90°,抛物线
经过A,B,C三点.
(1)求证:∠CAO=∠CAD;
(2)求弦BD的长;
(3)在抛物线的对称轴上是否存在点P使ΔPBC是以BC为腰的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
如图,在平面直角坐标系xOy中,点A的坐标为(-2,0),等边三角形AOC经过平移或轴对称或旋转对称都可以得到△OBD。
(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△OBD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△OBD,则旋转角可以是度;
(2)连接AD,交OC于点E,求∠AEO的度数。
为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查。已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计图表:
根据图表提供的信息,回答下列下列问题:
(1)样本中,男生身高的众数在组,中位数在组;
(2)样本中,女生身高在E组的人数有人;
(3)已知该校共有男生400人,女生380人,请估计身高在之间的学生约有多少人?
列方程解应用题:
把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则缺25本。这个班有多少?
如图,AB平分∠CAD,AC=AD。求证:BC=BD。
化简:。