如图1和图2,在中,,,.点在边上,点,分别在,上,且.点从点出发沿折线匀速移动,到达点时停止;而点在边上随移动,且始终保持.
(1)当点在上时,求点与点的最短距离;
(2)若点在上,且将的面积分成上下两部分时,求的长;
(3)设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示);
(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点从到再到共用时36秒.若,请直接写出点被扫描到的总时长.
两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,在同一条直线上,连结
请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母)
证明:
某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用6天。这项工程工期是多少天?
若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.
试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由
如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式
把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?
如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.用含x的代数式表示AC+CE的长
请问点C满足什么条件时,AC+CE的值最小?
根据(2)中的规律和结论,请构图求出代数式
的最小值.