如图1,在平面直角坐标系中,点在轴正半轴上,的长度为,以为边向上作等边三角形,抛物线经过点,,三点
(1)当时, ,当时, ;
(2)根据(1)中的结果,猜想与的关系,并证明你的结论;
(3)如图2,在图1的基础上,作轴的平行线交抛物线于、两点,的长度为,当为等腰直角三角形时,和的关系式为 ;
(4)利用(2)(3)中的结论,求与的面积比.
如图,梯形ABCD是一个拦河坝的截面图,坝高为6米.背水坡AD的坡角为
,为了提高河坝的抗洪能力,防汛指挥部决定加固河坝,若坝顶CD加宽0.8米,新的背水坡EF的坡度为1:1.4.河坝总长度为500米.
(1)求完成该工程需要多少立方米方土?
(2)某工程队在加固600立方米土后,采用新的加固模式,这样每天加固方数是原来的2倍,结果只用11天完成了大坝加固的任务.请你求出该工程队原来每天加固多少立方米土?
如图,已知直线,经过点P(
,
),点P关于
轴的对称点P′在反比例函数
(
)的图象上.
(1)求的值;
(2)直接写出点P′的坐标;
(3)求反比例函数的解析式.
如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,鞭个扇形恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).
⑴若小静转动转盘一次,求得到负数的概率;
⑵小宇和小静分别转动一次,若两人得到的数相同,则称两人“不谋而合”,用列表法(或画树形图)求两人“不谋而合”的概率.
如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.
⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2
⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)
解方程x(x-2)=2-x