(5分) 解不等式组:
(6分)如图,点B、D、C、F在一条直线上,且BC = FD,AB = EF.
(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是;
(2)添加了条件后,证明△ABC≌△EFD.
(5分) 计算:
如图9,已知直线的解析式为
,它与
轴、
轴分别相交于
、
两点,平行于直线
的直线
从原点
出发,沿
轴正方向以每秒
个单位长度的速度运动,运动时间为
秒,运动过程中始终保持
,直线
与
轴,
轴分别相交于
、
两点,线段
的中点为
,以
为圆心,以
为直径在
上方作半圆,半圆面积为
,当直线
与直线
重合时,运动结束.
求、
两点的坐标;
求与
的函数关系式及自变量
的取值范围;
直线在运动过程中,
当
为何值时,半圆与直线
相切?
是否存在这样的
值,使得半圆面积
?若存在,求出
值,若不存在,说明理由.
在如图8所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题:
图中格点是由格点
通过怎样变换得到的?
如果建立直角坐标系后,点的坐标为(
,
),点
的坐标为
,请求出过
点的正比例函数的解析式,并写出图中格点
各顶点的坐标.