游客
题文

如图1,直线 y = - 4 3 x + n x 轴于点 A ,交 y 轴于点 C ( 0 , 4 ) ,抛物线 y = 2 3 x 2 + bx + c 经过点 A ,交 y 轴于点 B ( 0 , - 2 ) .点 P 为抛物线上一个动点,过点 P x 轴的垂线 PD ,过点 B BD PD 于点 D ,连接 PB ,设点 P 的横坐标为 m

(1)求抛物线的解析式;

(2)当 ΔBDP 为等腰直角三角形时,求线段 PD 的长;

(3)如图2,将 ΔBDP 绕点 B 逆时针旋转,得到△ BD ' P ' ,且旋转角 PBP ' = OAC ,当点 P 的对应点 P ' 落在坐标轴上时,请直接写出点 P 的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 待定系数法求二次函数解析式 二次函数综合题 等腰直角三角形
登录免费查看答案和解析
相关试题

如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径).

(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;
(2)如图2,当F是AB的四等分点且EF·EC=时,求EC的值.

如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.

(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;
(2)求证:BF=BD;
(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.

如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.

(1)求证:△BGD∽△DMA;
(2)求证:直线MN是⊙O的切线.

已知关于x的方程的两根是一个矩形两邻边的长.
(1)k取何值时,方程在两个实数根;
(2)当矩形的对角线长为时,求k的值.

如图,要利用一面墙(墙长为25米)建羊圈,用75米的围栏围成总面积为300平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号