小明在研究矩形面积与矩形的边长,之间的关系时,得到下表数据:
0.5 |
1 |
1.5 |
2 |
3 |
4 |
6 |
12 |
|
12 |
6 |
4 |
3 |
2 |
1 |
0.5 |
结果发现一个数据被墨水涂黑了
(1)被墨水涂黑的数据为 .
(2)与之间的函数关系式为 ,且随的增大而 .
(3)如图是小明画出的关于的函数图象,点、均在该函数的图象上,其中矩形的面积记为,矩形的面积记为,请判断和的大小关系,并说明理由.
(4)在(3)的条件下,交于点,反比例函数的图象经过点交于点,连接、,则四边形的面积为 .
(8分)已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE,
求证:AE=BD.
解方程:
解方程组
(本题12分)如图,直角坐标系中,以点A(1,0)为圆心画圆,点M(4,4)在⊙A上,直线y=-x+b过点M,分别交x轴、
y轴于B、C两点.
⑴求⊙A的半径和b的值;
⑵判断直线BC与⊙A的位置关系,并说明理由;
⑶若点P在⊙A上,点Q是y轴上C点下方的一点,当△PQM为等腰直角三角形时,请直接
写出满足条件的点Q坐标.
(本题12分)如图①,平面直角坐标系中,已知C(0,10),
点P、Q同时从点出发,在线段OC上做往返匀速运动,设运动时间为t(s),点P、Q离开点O的距离为S图②中线段OA、OB(A、B都在格点上)分别表示当0≤t≤6时P、Q两点离开点O的距离S与运动时间t
(s)的函数图像.
⑴请在图②中分别画出当6≤t≤10时P、Q两点离开点O的距离S与运动时间t(s)的函数图像.
⑵求出P、Q两点第一次相遇的时刻.
⑶如图①,在运动过程中,以OP为一边画正方形OPMD,点D在x轴正半轴上,作QE∥PD交x轴于E,设△PMD与△OQE重合部分的面积 为y,试求出当0≤t≤10时y与t(s)的函数关系式(写出相应的t的范围).