如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为,双层部分的长度为,经测量,得到如下数据:
单层部分的长度 |
4 |
6 |
8 |
10 |
150 |
||
双层部分的长度 |
73 |
72 |
71 |
(1)根据表中数据的规律,完成以下表格,并直接写出关于的函数解析式;
(2)根据小敏的身高和习惯,挎带的长度为时,背起来正合适,请求出此时单层部分的长度;
(3)设挎带的长度为,求的取值范围.
四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:
(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;
(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
(1)计算:+
﹣(
+2
)
(2)当x=﹣1时,求代数式x2﹣5x﹣6的值.
某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.
(1)请问榕树和香樟树的单价各多少?
(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.
如图,已知AC=BC=CD,BD平分∠ABC,点E在BC的延长线上.
(1)试说明CD∥AB的理由;
(2)CD是∠ACE的角平分线吗?为什么?
(1)实验与观察:(用“>”、“=”或“<”填空)
当x=﹣5时,代数式x2﹣2x+2 1;
当x=1时,代数式x2﹣2x+2 1;
…
(2)归纳与证明:换几个数再试试,你发现了什么?请写出来并证明它是正确的;
(3)拓展与应用:求代数式a2+b2﹣6a﹣8b+30的最小值.