特例感知
(1)如图1,对于抛物线,,,下列结论正确的序号是 ;
①抛物线,,都经过点;
②抛物线,的对称轴由抛物线的对称轴依次向左平移个单位得到;
③抛物线,,与直线的交点中,相邻两点之间的距离相等.
形成概念
(2)把满足为正整数)的抛物线称为“系列平移抛物线”.
知识应用
在(2)中,如图2.
①“系列平移抛物线”的顶点依次为,,,,,用含的代数式表示顶点的坐标,并写出该顶点纵坐标与横坐标之间的关系式;
②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:,,,,,其横坐标分别为,,,,为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.
③在②中,直线分别交“系列平移抛物线”于点,,,,,连接,,判断,是否平行?并说明理由.
如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.
(1)求证:△BEC≌△DFA;
(2)求证:四边形AECF是平行四边形.
解方程组:.
如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线的图象过C点.
(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.
如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.
(1)当t为何值时,PC∥DB;
(2)当t为何值时,PC⊥BC;
(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.
在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.
(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;
(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.