已知抛物线与轴相交于、两点(点在点的左侧),并与轴相交于点.
(1)求、、三点的坐标,并求的面积;
(2)将抛物线向左或向右平移,得到抛物线,且与轴相交于、两点(点在点的左侧),并与轴相交于点,要使△和的面积相等,求所有满足条件的抛物线的函数表达式.
化简:.
如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.
(1)在运动过程中,求P,Q两点间距离的最大值;
(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;
(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时的t值;若不存在,请说明理由(≈2.24,结果保留一位小数)
如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE
(1)求证:△ABC∽△CBD;
(2)求证:直线DE是⊙O的切线.
甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.
(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;
(2)请判断该游戏对甲乙双方是否公平?并说明理由.
如图,在 中, , ,
(1)求作
,使它过点
、
、
(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)所作的圆中,求出劣弧
的长.