游客
题文

问题提出:

(1)如图1,已知ΔABC,试确定一点D,使得以ABCD为顶点的四边形为平行四边形,请画出这个平行四边形;

问题探究:

(2)如图2,在矩形ABCD中,AB=4BC=10,若要在该矩形中作出一个面积最大的ΔBPC,且使BPC=90°,求满足条件的点P到点A的距离;

问题解决:

(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)

科目 数学   题型 解答题   难度 较难
知识点: 圆周角定理 平行四边形的判定与性质 四边形综合题
登录免费查看答案和解析
相关试题

(共7分)
小江计划将鱼在年底打捞出来运往某地出售,为了预订车辆运输,必须知道鱼塘内共有多少千克的鱼,他第一次从鱼塘中打捞出100条鱼,共240kg,作上记号后,又放回鱼塘.过了两天,又捞出200条鱼,共510kg,且发现其中有记号的鱼只有4条.
(1)估计鱼塘中总共有多少条鱼?
(2)若平均每千克鱼可获利润5元,预计小江今年卖鱼总利润约多少钱?

如图,小芳和小丽想测量学校旗杆的高度,她们来到操场,小芳测得小丽身高1.6米,在阳光下的影子长度为2.4米,她想立刻测量旗杆的影长时,因旗杆靠近一教学楼,影子不全落在地面上,有一部分落在墙上,测得落在地面上影长为12米,留在墙上的影高为2米,求旗杆的高度.

解方程(每小题5分,共10分):
(1)
(2)

已知:如图,△DAC、△EBC均是等边三角形,点A、C、B在同一条直线上,且AE、BD分别与CD、CE交于点M、N.

求证:(1)AE=DB;
(2)△CMN为等边三角形.

某学校计划组织240名师生集体外出活动,计划租用甲、乙两种型号客车共6辆.已知甲、乙两种大客车的载客量和租金如下表,设租用甲种客车辆,租车总费用元.
(1)求出表示的函数关系式.
(2)给出最节省费用的租车方案;最节省费用为多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号