如图所示,梯形 中, , , , , ,点 是边 上的动点,点 是射线 上一点,射线 和射线 交于点 ,且 .
(1)求线段 的长;
(2)如果 是以 为腰的等腰三角形,求线段 的长;
(3)如果点 在边 上(不与点 、 重合),设 , ,求 关于 的函数解析式,并写出 的取值范围.
如图,正方形ABCD的边长为2,AC和BD相交于点O,过O作EF∥AB,交BC于E,交AD于F,则以点B为圆心,长为半径的圆与直线AC,EF,CD的位置关系分别是什么?
如图,⊙O的半径为3cm,弦AC=4cm,AB=4cm,若以O为圆心,再作一个圆与AC相切,则这个圆的半径为多少?这个圆与AB的位置关系如何?
如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切?
扇形的圆心角为,弧长是
,求扇形的面积.
如图所示,正方形是以金属丝围成的,其边长
,把此正方形的金属丝重新围成扇形的
,使
,
不变,问正方形面积与扇形面积谁大?大多少?由计算得出结果.