游客
题文

观察下列各个等式的规律:

第一个等式:22-12-12=1,第二个等式:32-22-12=2,第三个等式:42-32-12=3

请用上述等式反映出的规律解决下列问题:

(1)直接写出第四个等式;

(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.

科目 数学   题型 解答题   难度 中等
知识点: 规律型:数字的变化类 有理数的加减混合运算
登录免费查看答案和解析
相关试题

已知:如图,在菱形ABCD中,∠B= 60°,把一个含60°角的三角尺与这个菱形叠合,使三角尺60°角的顶点与点A重合,将三角尺绕点A按逆时针方向旋转 .
(1)如图1,当三角尺的两边分别与菱形的两边BC、CD相交于点E、F.求证:CE+CF=AB;
(2)如图2,当三角尺的两边分别与菱形的两边BC、CD的延长线相交于点E、F.写出此时CE、CF、AB长度之间关系的结论.(不需要证明)

投掷一枚质地均匀的正方体骰子.
(1)下列说法中正确的有.(填序号)
①向上一面点数为1点和3点的可能性一样大;
②投掷6次,向上一面点数为1点的一定会出现1次;
③连续投掷2次,向上一面的点数之和不可能等于13.
(2)如果小明连续投掷了10次,其中有3次出现向上一面点数为6点,这时小明说:投掷正方体骰子,向上一面点数为6点的概率是.你同意他的说法吗?说说你的理由.
(3)为了估计投掷正方体骰子出现6点朝上的概率,小亮采用转盘来代替骰子做实验.下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、白两种颜色,使得转动转盘,当转盘停止转动后,指针落在红色区域的概率与投掷正方体骰子出现6点朝上的概率相同.
(友情提醒:在转盘上用文字注明颜色和扇形圆心角的度数.)

如图,在四边形ABCD中,AC=BD,且AC⊥BD, E、F、G、H分别是AB、BC、CD、DA的中点.则四边形EFGH是怎样的四边形?证明你的结论.

班主任张老师为了了解本班学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1) .
(1) 该班共有名学生;
(2) 在张老师的鼓励下,该班学生第二天的发言次数比前一天明显增加,图2是全班第二天发言次数变化的人数的扇形统计图.根据统计图求第二天该班学生发言次数增加3次的人数和全班增加的总的发言次数.

如图,平行四边形ABCD中,AE⊥BD, CF⊥BD,垂足分别为E、F.求证:四边形AECF是平行四边形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号