对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.
(1)计算:F(243),F(617);
(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1⩽x⩽9,1⩽y⩽9,x,y都是正整数),规定:k=F(s)F(t),当F(s)+F(t)=18时,求k的最大值.
如图,点D、E分别在AC、BC上,如果测得CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,求A、B两地间的距离.
一个圆锥的轴截面平行于投影面,圆锥的正投影是边长为3的等边三角形,求这个圆锥的表面积?
如图,矩形ABCD中AB=6,DE ⊥AC于E,sin∠DCA=,求矩形ABCD的面积。
如图,在△ABC的外接圆O中,D是弧BC的中点,AD交BC于点E,连结BD.连结,DC2=DE·DA是否成立?若成立,给出证明;若不成立,举例说明.
在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号