在初中阶段的函数学习中,我们经历了“确定函数的表达式利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.
结合上面经历的学习过程,现在来解决下面的问题在函数中,当时,;当时,.
(1)求这个函数的表达式;
(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;
(3)已知函的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.
如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)求证:AD⊥CD;
(2)若AD=2,AC=,求AB的长.
已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.
如图,点B和点C分别为∠MAN两边上的点,AB=AC.
(1)按下列语句画出图形:
① AD⊥BC,垂足为D;
② ∠BCN的平分线CE与AD的延长线交于点E
③ 连结BE.
(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:≌,≌;并选择其中的一对全等三角形予以证明.
已知是一元二次方程
的实数根,求代数式
的值.
有一则广告称“有80%的人使用本公司的产品”你听了这则广告后有何想法?