(1)如图1,是正方形边上的一点,连接、,将绕点逆时针旋转,旋转后角的两边分别与射线交于点和点.
①线段和的数量关系是 ;
②写出线段,和之间的数量关系.
(2)当四边形为菱形,,点是菱形边所在直线上的一点,连接、,将绕点逆时针旋转,旋转后角的两边分别与射线交于点和点.
①如图2,点在线段上时,请探究线段、和之间的数量关系,写出结论并给出证明;
②如图3,点在线段的延长线上时,交射线于点,若,,直接写出线段的长度.
已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.
如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠C,
(1)求证:CB//PD;
(2)若AB=5,sin∠P=,求BC的长.
如图:在△ABC中,∠C=90°,AD平分∠CAB交BC于点D,AB=10,AC=6,
求D到AB的距离.
如图,一次函数y1=x+1的图象与反比例函数y2=(k为常数,且k≠0)的图象都经过点A(m,2).
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1与y2的大小.
一只不透明的袋子中装有2个白球和一个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,请用树状图或列表的方法列出所有可能的结果,求出两次摸出的球颜色相同的概率.