游客
题文

小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.

请你根据图象进行探究:

(1)小王和小李的速度分别是多少?

(2)求线段BC所表示的yx之间的函数解析式,并写出自变量x的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的应用
登录免费查看答案和解析
相关试题

(11·大连)(本题12分)如图15,抛物线y=ax2+bx+c经过A (-1,0)、B (3,
0)、C (0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.
(1)求该抛物线的解析式;
(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;
若不存在,说明理由;
(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相
等,若存在,直接写出点R的坐标;若不存在,说明理由.

(11·大连)(本题12分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB
∠C,BE⊥DE,垂足为E,DE与AB相交于点F.
(1)当AB=AC时,(如图13),
① ∠EBF=_______°;
② 探究线段BE与FD的数量关系,并加以证明;
(2)当AB=kAC时(如图14),求的值(用含k的式子表示).

(11·大连)(本题11分)如图,在平面直角坐标系中,点A、B、C的坐标分别
为(0,2)、(-1,0)、(4,0).P是线段OC上的一动点(点P与点O、C不重合),过点P
的直线x=t与AC相交于点Q.设四边形ABPQ关于直线x=t的对称的图形与△QPC重叠
部分的面积为S.
(1)点B关于直线x=t的对称点B′的坐标为________;
(2)求S与t的函数关系式.

(11·大连)(本题10分)如图10,某容器由A、B、C三个长方体组成,其中
A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是容器容积的(容器各面的厚
度忽略不计).现以速度v(单位:cm3/s)均匀地向容器注水,直至注满为止.图11是注水
全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.
⑴在注水过程中,注满A所用时间为______s,再注满B又用了_____s;
⑵求A的高度hA及注水的速度v;
⑶求注满容器所需时间及容器的高度.

(11·大连)(本题9分)如图9,AB是⊙O的直径,CD是⊙O的切线,切点
为C,BE⊥CD,垂足为E,连接AC、BC.
(1)△ABC的形状是______________,理由是_________________;
(2)求证:BC平分∠ABE;
(3)若∠A=60°,OA=2,求CE的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号