游客
题文

如图1,菱形ABCD的顶点AD在直线上,BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB'C'D'B'C'交对角线AC于点MC'D'交直线l于点N,连接MN

(1)当MN//B'D'时,求α的大小.

(2)如图2,对角线B'D'AC于点H,交直线l与点G,延长C'B'AB于点E,连接EH.当ΔHEB'的周长为2时,求菱形ABCD的周长.

科目 数学   题型 解答题   难度 中等
知识点: 旋转的性质 菱形的性质 等边三角形的判定与性质
登录免费查看答案和解析
相关试题

(1)已知二次函数y=ax2+bx+c(a≠0)的图象过A(2,0)、B(12,0),且y的最大值为50,求这个二次函数的解析式;
(2)抛物线顶点P(2,1),且过A(-1,10),求抛物线的解析式.[来

已知双曲线上一点M(1,m)和双曲线上一点N(n,3).
(1)求m、n的值;
(2)求△OMN的面积.

在直角坐标系xOy中,已知点P是反比例函数(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.

(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:①求出点A,B,C的坐标;②反比例函数(x>0)图象上是否存在点M,使△MBP的面积是菱形ABCP面积的,若存在,直接写出所有满足条件的M点的坐标;若不存在,试说明理由.

如图,四边形ABCD、BEFG均为正方形.

(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明.
(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.
(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系.

如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).

(1)在图中作出△ABC关于直线对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)
(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;
(3)在⑵的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号