十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.
(1)五届艺术节共有 个班级表演这些节目,班数的中位数为 ,在扇形统计图中,第四届班级数的扇形圆心角的度数为 ;
(2)补全折线统计图;
(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演 “经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用,,,表示),利用树状图或表格求出该班选择和两项的概率.
先化简,再求值:(x﹣2+)÷
,其中x=(π﹣2015)0﹣
+
.
如图,正方形ABCD中,以BC为直径作半圆,BC=2cm.现有两动点E、F,分别从点B、点A同时出发,点E沿线段BA以1cm/秒的速度向点A运动,点F沿折线A-D-C以2cm/秒的速度向点C运动.当点E到达A点时,E、F同时停止运动,设点E运动时间为t.
(1)当t为何值时,线段EF与BC平行?
(2)设1<t<2,当t为何值时,EF与半圆相切?
(3)如图2,将图形放在直角坐标系中,当1<t<2时,设EF与AC相交于点P,双曲线y=(k≠0)经过点P,并且与边AB交于点H,求出双曲线的函数关系式,并直接写出
的值.
二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(-3,0)、B(1,0)两点,与y轴交于点C(0,-3m)(其中m>0),顶点为D.
(1)用含m的代数式分别表示a、b、c;
(2)如图,当m取何值时,△ADC为直角三角形?
(1)如图1,Rt△ABC中,∠ACB=90°,点D、E在边AB上,且AD=AC,BE=BC,求∠DCE的度数;
(2)如图2,在△ABC中,∠ACB=40°,点D、E在直线AB上,且AD=AC,BE=BC,则∠DCE=;
(3)在△ABC中,∠ACB=n°(0<n<180°),点D、E在直线AB上,且AD=AC,BE=BC,求∠DCE的度数(直接写出答案,用含n的式子表示).
某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出300件;若按每件6元的价格销售,每月能卖出200件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?