4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:
一、数据收集,从全校随机抽取20学生,进行每周用于课外阅读时间的调查,数据如下(单位:
30 |
60 |
81 |
50 |
44 |
110 |
130 |
146 |
80 |
100 |
60 |
80 |
120 |
140 |
75 |
81 |
10 |
30 |
81 |
92 |
二、整理数据,按如下分段整理样本数据并补全表格:
课外阅读时间 |
||||
等级 |
||||
人数 |
3 |
8 |
三、分析数据,补全下列表格中的统计量:
平均数 |
中位数 |
众数 |
80 |
81 |
四、得出结论:
①表格中的数据: , , ;
②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为 ;
③如果该校现有学生400人,估计等级为“”的学生有 人;
④假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读 本课外书.
如图,点A的坐标是(0.5,0),现在点A绕着点O按逆时针方向旋转, 每秒钟旋转30°,同时点A离开O点的距离以每秒0.5个单位的速度在增大,当A点第11 秒钟时到达图中的P点处,求P点的坐标.
某学生站在公园湖边的M处,测得湖心亭A位于北偏东30°方向上,又测得游船码头B位于南偏东60°方向上.现有一艘游船从湖心亭A 处沿正南方向航行返回游船码头,已知M处与AB的距离MN=0.7千米,求湖心亭与游船码头B的距离(精确到0.1千米).
要求tan30°的值,可构造如图所示的直角三角形进行计算.
作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,那么BC=,∠ABC=" 30" °
∴tan30°=.
在此图的基础上,通过添加适当的辅助线,可求出tan15°的值,请简要写出你添加的辅助线和求出的tan15°的值.
如图,有一个同学用一个含有30°角的直角三角板估测他们学校的旗杆AB 的高度,他将30°的直角边水平放在1.3米高的支架CD上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D、B的距离为15米,求旗杆AB的高度(精确到0.1米).
如图,从B点测得塔顶A的仰角为60°,测得塔基D的仰角为45°,已知塔基高出测量仪器20米(即DC=20米),求塔身AD的高(精确到1米).