如图,在等边中,,动点从点出发以的速度沿匀速运动.动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点、同时停止运动.设运动时间为.过点作于,连接交边于.以、为边作平行四边形.
(1)当为何值时,为直角三角形;
(2)是否存在某一时刻,使点在的平分线上?若存在,求出的值,若不存在,请说明理由;
(3)求的长;
(4)取线段的中点,连接,将沿直线翻折,得△,连接,当为何值时,的值最小?并求出最小值.
画出函数y=-3x+2的图像
(1)试判断点P(2,-5)是否在此函数的图像上,并说明理由.
(2)求出此直线与坐标轴交点的坐标以及此直线与坐标轴所围成的三角形面积.
已知y-5与x成正比例,且当x=-2时,y=-1.
(1)写出y与x之间的函数关系式;
(2)当x=4时,求y的值;
如图,平行四边形ABCD(两组对边平行且相等)的边长AB=4,BC=2,若把它放在直角坐标系内,使AB在x轴上,点C在y轴上,点A的坐标是(-3,0),求点B、C、D的坐标.
如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)
(1)若点D与点A关于y轴对称,则点D的坐标为 .
(2)将点B先向右平移5个单位再向上平移1个单位得到点C,则点C的坐标为 .
(3)求A,B,C,D组成的四边形ABCD的面积。
如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE与BC分别与AD、AE相交于点F、G,CB=5.
回答下列问题:
(1)求证:△GAF∽△GBA;
(2)求证:AF2=FG•FC;
(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)
(4)探究BF2、FG2、GC2之间的关系,证明你的结论.