某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温 有关,现将去年六月份(按30天计算)的有关情况统计如下:
(最高气温与需求量统计表)
最高气温 (单位: |
需求量(单位:杯) |
|
200 |
|
250 |
|
400 |
(1)求去年六月份最高气温不低于 的天数;
(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;
(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温 满足 (单位: ,试估计这一天销售这种鲜奶所获得的利润为多少元?
(本题8分)(湖南湘西,23,8分)湘西以“椪柑之乡”著称,在椪柑收获季节的某星期天,青山中学抽调八年级(1)、(2)两班部分学生去果园帮助村民采摘椪柑,其中,八年级(1)班抽调男同学2人,女同学8人,共摘得柑840千克;八年级(2)班调男同学4人,女同学6人,共摘得椪柑880千克,问这天被抽调的同学中,男同学每人平均摘椪柑多少千克?女同学每人平均摘椪柑多少千克?
(本题6分) (湖南湘西,22,6分)如图,已知反比例函数的图象经过点A(1,2).
(1)求k的值.
(2)过点A分别作x轴和y轴的垂线,垂足为B和C,求矩形ABOC的面积.
(本题6分)博才中学要从甲、乙两名同学中选拔一名同学代表学校参加“华罗庚金杯”数学竞赛活动。这两位活动同学最近四次的数学测验成绩如下表:(单位:分)
第一次 |
第二次 |
第三次 |
第四次 |
|
甲 |
75 |
70 |
85 |
90 |
乙 |
85 |
82 |
75 |
78 |
(1)根据表中数据,分别求出甲、乙两名同学这四次数学测验成绩的平均分.
(2)经计算,甲、乙两位同学这四次数学测验成绩的方差分别为你认为哪位同学的成绩较稳定?请说明理由.
(本题6分) (湖南湘西,20,6分)如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.
(1)求∠BAC的度数。
(2)若AC=2,求AD的长。
(本题6分),(湖南湘西,19,6分)如图,已知AC平分BAD,AB=AD。求证:△ABC≌△ADC