为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.
(1)如图1,满足
.
①求的值;
②若C(-6,0),连CB,作BE⊥CB,垂足为B,且BC=BE,连AE交轴于P,求P点坐标.
(2)如图2,若A(6,0),B(0,3),点Q从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点Q运动时间为秒,过Q点作直线AB的垂线,垂足为D,直线QD与
轴交于E点,在点Q的运动过程中,一定存在△EOQ≌△AOB,请直接写出存在的
值以及相应的E点坐标.
如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=∠.
(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠=90°,则BE CF;
(填“>”、“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠与∠BCA关系的条件 ,使①中的两个结论仍然成立,并证明这两个结论.
(2)如图3,若直线CD经过∠BCA的外部,∠=∠BCA,请提出EF、BE、AF三条线段数量关系的合理猜想(不要求证明).
已知AB=AC,AD=AE,∠BAC=∠DAE,直线BD、CE交于点G,
(1)如图1,点D在AC上,求证:∠BGC=∠BAC;
(2)如图2,当点D不在AC上,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.
如图,把一个直角△ABC(∠ACB=90°,∠ABC=60°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置,F、G分别是BD、BE上的点,且BF=BG,延长CF与DG交于点H,
(1)求证:CF=DG;
(2)求∠FHG的度数.
在直角坐标系中,△ABC的三个顶点的位置如图所示,
(1)请画出△ABC关于轴对称的
(其中
分别是A、B、C的对应点,不写画法);
(2)直接写出三点的坐标:
;
(3)已知BC=13,直接写出BC边上的高.