若一个两位数十位、个位上的数字分别为,,我们可将这个两位数记为,易知;同理,一个三位数、四位数等均可以用此记法,如.
【基础训练】
(1)解方程填空:
①若,则 ;
②若,则 ;
③若,则 ;
【能力提升】
(2)交换任意一个两位数的个位数字与十位数字,可得到一个新数,则一定能被 整除,一定能被 整除,一定能被 整除;(请从大于5的整数中选择合适的数填空)
【探索发现】
(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用,再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.
①该“卡普雷卡尔黑洞数”为 ;
②设任选的三位数为(不妨设,试说明其均可产生该黑洞数.
已知,如图,抛物线 y= ax 2+ bx+ c( a≠0)的顶点为 M(1,9),经过抛物线上的两点 A(﹣3,﹣7)和 B(3, m)的直线交抛物线的对称轴于点 C.
(1)求抛物线的解析式和直线 AB的解析式.
(2)在抛物线上 A、 M两点之间的部分(不包含 A、 M两点),是否存在点 D,使得 S △ DAC=2 S △ DCM?若存在,求出点 D的坐标;若不存在,请说明理由.
(3)若点 P在抛物线上,点 Q在 x轴上,当以点 A, M, P, Q为顶点的四边形是平行四边形时,直接写出满足条件的点 P的坐标.
如图,点 P是正方形 ABCD内的一点,连接 CP,将线段 CP绕点 C顺时针旋转90°,得到线段 CQ,连接 BP, DQ.
(1)如图1,求证:△ BCP≌△ DCQ;
(2)如图,延长 BP交直线 DQ于点 E.
①如图2,求证: BE⊥ DQ;
②如图3,若△ BCP为等边三角形,判断△ DEP的形状,并说明理由.
当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.
(1)直接写出书店销售该科幻小说时每天的销售量 y(本)与销售单价 x(元)之间的函数关系式及自变量的取值范围.
(2)书店决定每销售1本该科幻小说,就捐赠 a(0< a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求 a的值.
如图,△ ABC内接于⊙ O, AB是⊙ O的直径, AC= CE,连接 AE交 BC于点 D,延长 DC至 F点,使 CF= CD,连接 AF.
(1)判断直线 AF与⊙ O的位置关系,并说明理由.
(2)若 AC=10,tan∠ CAE= ,求 AE的长.
通辽市某中学为了了解学生"大课间"活动情况,在七、八、九年级的学生中,分别抽取了相同数量的学生对"你最喜欢的运动项目"进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.
七年级学生最喜欢的运动项目人数统计表
项目 |
排球 |
篮球 |
踢毽 |
跳绳 |
其他 |
人数(人) |
7 |
8 |
14 |
|
6 |
请根据以上统计表(图)解答下列问题:
(1)本次调查共抽取了多少人?
(2)补全统计表和统计图.
(3)该校有学生1800人,学校想对"最喜欢踢毽子"的学生每4人提供一个毽子,学校现有124个毽子,能否够用?请说明理由.