某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和解析,下面给出了部分信息:
七、八年级学生一分钟跳绳成绩解析表
年级 |
平均数 |
中位数 |
众数 |
七 |
116 |
115 |
|
八 |
119 |
126 |
117 |
七年级学生一分钟跳绳成绩(数据分7组:,,,在这一组的是:
100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119
根据以上信息,回答下列问题:
(1)表中 ;
(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是 (填“甲”或“乙” ,理由是 .
(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?
现场学习:在△ABC中,AB、BC、AC三边的长分别为、
、
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为: _________ ;
(2)若△DEF三边的长分别为、
、
,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;
(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.
如图,直线分别交x轴、y轴于A、B两点,线段AB的垂直平分线分别交x轴于点.求点C的坐标并求△ABC的面积.
如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.
(1)求证:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE的延长线上,求证:
如图,(1)在梯形ABCD中,AB∥DC,若∠A=∠B,求证:AD=BC
(2)写出(1)的逆命题,并证明。