今年是中华人民共和国建国70周年,襄阳市某学校开展了“我和我的祖国”主题学习竞赛活动.学校3000名学生全部参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,得到如下不完整的统计表.根据表中所给信息,解答下列问题:
成绩(分分组 |
频数 |
频率 |
15 |
0.30 |
|
0.40 |
||
10 |
||
5 |
0.10 |
(1)表中 , ;
(2)这组数据的中位数落在 范围内;
(3)判断:这组数据的众数一定落在范围内,这个说法 (填“正确”或“错误” ;
(4)这组数据用扇形统计图表示,成绩在范围内的扇形圆心角的大小为 ;
(5)若成绩不小于80分为优秀,则全校大约有 名学生获得优秀成绩.
已知反比例函数的图象经过点A(-2,3).
(1)求出这个反比例函数的解析式;
(2)经过点A的正比例函数的图象与反比例函数图象还有其他的交点吗?若有,求出交点坐标;若没有,说明理由.
关于的一元二次方程
.
(1)为何值时,方程有两个不相等的实数根?
(2)为何值时,方程没有实数根?
解下列方程.
(1)
(2)
如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒后,M、N两点重合?
(2)点M、N运动几秒后,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形?如存在,请求出此时M、N运动的时间.
某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表.
A种产品 |
B种产品 |
|
成本(万元/件) |
2 |
5 |
利润(万元/件) |
1 |
3 |
(1)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有几种生产方案?
(2)在(1)的条件下,如何生产能使获利最大?并求出最大利润.