游客
题文

《人民日报》点赞湖北宜昌“智慧停车平台”.作为“全国智慧城市”试点,我市通过“互联网”、“大数据”等新科技,打造“智慧停车平台”,着力化解城市“停车难”问题.市内某智慧公共停车场的收费标准是:停车不超过30分钟,不收费;超过30分钟,不超过60分钟,计1小时,收费3元;超过1小时后,超过1小时的部分按每小时2元收费(不足1小时,按1小时计).

(1)填空:若市民张先生某次在该停车场停车2小时10分钟,应交停车费  元.若李先生也在该停车场停车,支付停车费11元,则停车场按  小时(填整数)计时收费.

(2)当x取整数且x1时,求该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的应用
登录免费查看答案和解析
相关试题

已知:如图,在 ΔOAB 中, OA = OB O AB 相切于点 C .求证: AC = BC .小明同学的证明过程如下框:

证明:连结 OC

OA = OB

A = B

OC = OC

ΔOAC ΔOBC

AC = BC

小明的证法是否正确?若正确,请在框内打“ ”;若错误,请写出你的证明过程.

比较 x 2 + 1 2 x 的大小.

(1)尝试(用“ < ”,“ = ”或“ > ”填空) :

①当 x = 1 时, x 2 + 1    2 x

②当 x = 0 时, x 2 + 1    2 x

③当 x = - 2 时, x 2 + 1    2 x

(2)归纳:若 x 取任意实数, x 2 + 1 2 x 有怎样的大小关系?试说明理由.

(1)计算: ( 2020 ) 0 - 4 + | - 3 |

(2)化简: ( a + 2 ) ( a - 2 ) - a ( a + 1 )

如图,已知在平面直角坐标系 xOy 中,抛物线 y = - x 2 + bx + c ( c > 0 ) 的顶点为 D ,与 y 轴的交点为 C .过点 C 的直线 CA 与抛物线交于另一点 A (点 A 在对称轴左侧),点 B AC 的延长线上,连结 OA OB DA DB

(1)如图1,当 AC / / x 轴时,

①已知点 A 的坐标是 ( - 2 , 1 ) ,求抛物线的解析式;

②若四边形 AOBD 是平行四边形,求证: b 2 = 4 c

(2)如图2,若 b = - 2 BC AC = 3 5 ,是否存在这样的点 A ,使四边形 AOBD 是平行四边形?若存在,求出点 A 的坐标;若不存在,请说明理由.

已知在 ΔABC 中, AC = BC = m D AB 边上的一点,将 B 沿着过点 D 的直线折叠,使点 B 落在 AC 边的点 P 处(不与点 A C 重合),折痕交 BC 边于点 E

(1)特例感知 如图1,若 C = 60 ° D AB 的中点,求证: AP = 1 2 AC

(2)变式求异 如图2,若 C = 90 ° m = 6 2 AD = 7 ,过点 D DH AC 于点 H ,求 DH AP 的长;

(3)化归探究 如图3,若 m = 10 AB = 12 ,且当 AD = a 时,存在两次不同的折叠,使点 B 落在 AC 边上两个不同的位置,请直接写出 a 的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号