如图,已知直线与轴交于点,与轴交于点,线段的长是方程的一个根,.请答案下列问题:
(1)求点,的坐标;
(2)直线交轴负半轴于点,交轴正半轴于点,交直线于点.若是的中点,,反比例函数图象的一支经过点,求的值;
(3)在(2)的条件下,过点作,垂足为,点在直线上,点在直线上.坐标平面内是否存在点,使以,,,为顶点的四边形是正方形?若存在,请写出点的个数,并直接写出其中两个点的坐标;若不存在,请说明理由.
如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?(注:所有小路进出口的宽度相等,且每段小路均为平行四边形)
我们知道:对于任何实数,①∵
≥0,∴
+1>0;②∵
≥0,∴
+
>0.
模仿上述方法解答:
求证:(1)对于任何实数,均有:
>0;
(2)不论为何实数,多项式
的值总大于
的值.
某种储蓄的月利率是0.36%,今存入本金100元,求本息和(本金与利息的和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和.
有一个周长为24的矩形场地,设矩形的一边长为x,另一边长为y(x>y),求y与x的函数关系式,并直接写出自变量x的取值范围。
已知y+b与x+n成正比例(其中b、n是常数).
(1)试说明y是x的一次函数;
(2)若x=3时,y=5,x=2时,y=2,试写出这个函数关系式.