如图,已知直线与轴交于点,与轴交于点,线段的长是方程的一个根,.请答案下列问题:
(1)求点,的坐标;
(2)直线交轴负半轴于点,交轴正半轴于点,交直线于点.若是的中点,,反比例函数图象的一支经过点,求的值;
(3)在(2)的条件下,过点作,垂足为,点在直线上,点在直线上.坐标平面内是否存在点,使以,,,为顶点的四边形是正方形?若存在,请写出点的个数,并直接写出其中两个点的坐标;若不存在,请说明理由.
(1);
(2).
如图11,正方形ABCD的边长为5,点F为正方形ABCD内的点,△BFC经逆时针旋转后能与△BEA重合.
(1)旋转中心是哪一点?旋转了多少度?
(2)判断△BEF是怎样的三角形?并说明理由;
(3)若BE=3,FC=4,说明AE∥BF.
如图10,在梯形ABCD中,AD∥BC,AB= DC=1,BD平分∠ABC,BD⊥CD.
(1)求:① ∠BAD的度数;② BD的长;
(2)延长BC至点E,使CE=CD,说明△DBE是等腰三角形
如图9,在正方形网格中每个小正方形的边长都是单位1,已知△ABC和△A1B1C1关于点O成中心对称,点O直线x上.
(1)在图中标出对称中心O的位置;
(2)画出△A1B1C1关于直线x对称的△A2B2C2;
(3)△ABC与△A2B2C2满足什么几何变换?
(1)3x2-24x+48;
(2) 3a+(a+1)(a-4)