.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.
(1)改善后滑滑板会加长多少?(精确到0. 1)
(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长空地,像这样改造是否可行说明理由?(参考
)
如图,对称轴为的抛物线
与
轴相交于点
、
.
求抛物线的解析式,并求出顶点
的坐标;
连结AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为
,当0<S≤18时,求
的取值范围;
在(2)的条件下,当
取最大值时,抛物线上是否存在点
,使△OP
为直角三角形且OP为直角边.若存在,直接写出点
的坐标;若不存在,说明理由.
已知:如图,在锐角∠MAN的边AN上取一点B,以AB为直径的半圆O交AM于C,交∠MAN的角平分线于E,过点E作ED⊥AM,垂足为D,反向延长ED交AN于F.猜想ED与⊙O的位置关系,并说明理由;
若cos∠MAN=
,AE=
,求阴影部分的面积.
已知:如图,AB和DE是直立在地面上的两根立柱,AB="5" m,某一时刻,AB在阳光下的投影BC="4" m.请你在图中画出此时DE在阳光下的投影,并简述画图步骤;
在测量AB的投影长时,同时测出DE在阳光下的投影长为6 m,请你计算DE的长.
在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园面积是荒地面积的一半,下面分别是小华与小芳的设计方案.
方案是否符合条件有不同意见,你认为小芳的方案符合条件吗?若不符合,请用方程的方法说明理由.你还有其他的设计方案吗?请在图9-3中画出你所设计的草图,将花园部分涂上阴影,并加以说明.
如图,将一矩形纸片ABCD折叠,使点C与点A重合,点D落在点E处,折痕为MN,图中有全等三角形吗?若有,请找出并证明.