如图,在正方形ABCD中,E、F分别是AB、BC上的点,且AE=BF.求证:CE=DF.
化简:
在△ABC中,∠A=90°,AB=8,AC=6,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.设AM=.
(1)用含的代数式表示△MNP的面积S;
(2)在动点M的运动过程中,记△MNP与梯形BCNM重合部分的面积为,试求
关于
的函数表达式,并求
为何值时,
的值最大,最大值是多少?
如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE。
(1)求证:AC=AE;
(2)求△ACD外接圆的半径。
生态公园计划在园内的坡地上造一片有A、B两种树的混合林,需要购买这两种树苗2000棵。种植A、B两种树苗的相关信息如下表:
品种项目 |
单价(元/棵) |
种植费(元/棵) |
成活率 |
A |
15 |
3 |
95% |
B |
20 |
4 |
99% |
设购买A种树苗x棵,造这片林的总费用为y元。解答下列问题:
(1)写出y(元)与x(棵)之间的函数关系式;
(2)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?