游客
题文

如图,海岛 B 在海岛 A 的北偏东30方向,且与海岛 A 相距20海里,一艘渔船从海岛 B 出发,以5海里 / 时的速度沿北偏东 75 ° 方向航行,同时一艘快艇从海岛 A 出发,向正东方向航行.2小时后,快艇到达 C 处,此时渔船恰好到达快艇正北方向的 E 处.

(1)求 ABE 的度数;

(2)求快艇的速度及 C E 之间的距离.

(参考数据: sin 15 ° 0 . 26 cos 15 ° 0 . 97 tan 15 ° 0 . 27 3 1 . 73 )

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形的应用-方向角问题
登录免费查看答案和解析
相关试题

阅读下列材料,并解决后面的问题.
在锐角△ABC中,∠A、∠B、∠C的对边分别是abc,过AADBCD(如图),则sinB=sinC=,即AD=csinBAD=bsinC,于是csinB=bsinC,即.同理有:,所以

即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.
根据上述材料,完成下列各题.
(1)如图,△ABC中,∠B=450,∠C=750BC=60,则∠A=AC=

(2)如图,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A的距离AB.

.(本题满分12分) 如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).
①求当t为多少时,四边形PQAB为平行四边形?(4分)
②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式. (4分)
(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标. (4分)

(本小题满分12分)
(1)观察发现
如(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P
再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为. (2分)

(2)实践运用
如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,求PM+PN的最小值。(5分)

(3)拓展延伸
如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法. (5分)

(本题满分10分) (1)观察与发现:将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′ 处(如图1),折痕为EF.小明发现△ AEF为等腰三角形,你同意吗?请说明理由.(3分)

(2)实践与应用:以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),请求出折痕EF的长及EF所在直线的函数关系式.(4+3分)

(本题满分6分)已知一次函数的图象经过点,且与函数的图象相交于点
(1)求的值;(2分)
(2)若函数的图象与轴的交点是B,函数的图象与轴的交点是C,求四边形的面积(其中O为坐标原点).(4分)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号