如图1,抛物线 与 轴交于 , ,与 轴交于点 .已知直线 过 , 两点.
(1)求抛物线和直线 的表达式;
(2)点 是抛物线上的一个动点.
①如图1,若点 在第一象限内,连接 ,交直线 于点 .设 的面积为 , 的面积为 ,求 的最大值;
②如图2,抛物线的对称轴 与 轴交于点 ,过点 作 ,垂足为 .点 是对称轴 上的一个动点,是否存在以点 , , , 为顶点的四边形是平行四边形?若存在,求出点 , 的坐标;若不存在,请说明理由.
3x﹣4(2x+5)=x+4;
x﹣4=2﹣5x
在平面直角坐标系中,如图所示,△ABC是边长为2的等边三角形,将△ABC绕着点B按顺时针方向旋转得到△EDB,使得点E落在轴的正半轴上,连结CE、AD、
(1)求证:AD=CE;
(2)求AD的长;
(3)求过C、E两点的直线的解析式.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC
(2)若AB=4,AD=3,AE=3,求AF的长.
小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?