一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母、、.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.
(1)第一次摸到字母的概率为 ;
(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“”的概率.
如图,在平面直角坐标系中,△AOB的顶点坐标分别为A(2,1)、O(0,0)、B(1,-2).
(1)P(a,b)是△AOB的边AB上一点,△AOB经平移后点P的对应点为P2(a-3, b+1),请画出上述平移后的△A1O1B1,并写出点A1的坐标;
(2)以点O为位似中心,在y轴的右侧画出△AOB的一个位似△A2OB2,使它与△AOB的相似比为2:1,并分别写出点A、P的对应点A2、P2的坐标;
(3)判断△A2OB2与△A1O1B1能否是关于某一点Q为位似中心的位似图形,若是,请在图10中标出位似中心Q,并写出点Q的坐标.
如图,矩形ABCD中,E为BC上一点,DF⊥AE于点F.
(1)求证:△ABE∽△DFA;
(2)若AB=6,AD=12,BE=8,求DF的长.
已知关于x的方程的一个根为
.
(1)求的值及方程的另一个根;
(2)如果一个三角形的三条边长都是这个方程的根,求这个三角形的周长.
解方程(每小题4分,共8分)
(1);
(2).
在平面直角坐标系xOy中,已知A(﹣2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.
(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.
(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.
(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.