为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了"垃圾分类知识竞赛",为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.
(1)学校设计了以下三种抽样调查方案:
方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;
方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;
方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.
其中抽取的样本具有代表性的方案是 .(填"方案一"、"方案二"或"方案三"
(2)学校根据样本数据,绘制成下表 分及以上为"优秀",60分及以上为"及格"
样本容量 |
平均分 |
及格率 |
优秀率 |
最高分 |
最低分 |
100 |
93.5 |
|
|
100 |
80 |
分数段统计(学生成绩记为 |
|||||
分数段 |
|
|
|
|
|
频数 |
0 |
5 |
25 |
30 |
40 |
请结合表中信息解答下列问题:
①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;
②估计该校1200名学生中达到"优秀"的学生总人数.
化简:÷
.
两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如图一所示的位置放置,点O与E重合.
(1)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长度的速度向右运动,当点E运动到与点B重合时停止,设运动x秒后,Rt△AOB和Rt△CED的重叠部分面积为y,求y与x之间的函数关系式;
(2)当Rt△CED以(1)中的速度和方向运动,运动时间x=2秒时,Rt△CED运动到如图二所示的位置,若抛物线y=x2+bx+c过点A,G,求抛物线的解析式;
(3)现有一动点P在(2)中的抛物线上运动,试问点P在运动过程中是否存在点P到x轴或y轴的距离为2的情况?若存在,请求出点P的坐标;若不存在,请说明理由.
如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x2﹣mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM并延长交x轴于N.
(1)求⊙M的半径.
(2)求线段AC的长.
(3)若D为OA的中点,求证:CD是⊙M的切线.
某商店销售一种商品,每件的进价为2.5元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大?
已知:如图一次函数y=x﹣3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.