游客
题文

阅读感悟:

有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:

已知实数 x y 满足 3 x - y = 5 ①, 2 x + 3 y = 7 ②,求 x - 4 y 7 x + 5 y 的值.

本题常规思路是将①②两式联立组成方程组,解得 x y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由① - ②可得 x - 4 y = - 2 ,由① + × 2 可得 7 x + 5 y = 19 .这样的解题思想就是通常所说的"整体思想".

解决问题:

(1)已知二元一次方程组 2 x + y = 7 , x + 2 y = 8 , x - y =   - 1   x + y =   

(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?

(3)对于实数 x y ,定义新运算: x * y = ax + by + c ,其中 a b c 是常数,等式右边是通常的加法和乘法运算.已知 3 * 5 = 15 4 * 7 = 28 ,那么 1 * 1 =   

科目 数学   题型 解答题   难度 中等
知识点: 二元一次方程组的应用 解三元一次方程组
登录免费查看答案和解析
相关试题

(年福建龙岩13分)如图,在△ABC中,AB=AC=10,BC=12,D,E分别是边BC,AB的中点,P是BC边上的动点(不与B,C重合).设BP=x.

(1)当x=6时,求PE的长;
(2)当△BPE是等腰三角形时,求x的值;
(3)当AD平分EP时,试判断以EP为直径的圆与直线AC的位置关系,并说明理由.

(2014年福建福州13分)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC="60°." 动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动. 设运动时间为t秒.
(1)当时,则OP=
(2)当△ABP是直角三角形时,求t的值;
(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:.

(年海南省14分)如图,对称轴为直线x=2的抛物线经过点A(-1,0),C(0,5)两点,与x轴另一交点为B,已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.
(1)求此抛物线的解析式;
(2)当a=1时,求四边形MEFP面积的最大值,并求此时点P的坐标;
(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.

(年四川遂宁12分)已知:直线l:y=﹣2,抛物线y=ax2+bx+c的对称轴是y轴,且经过点(0,﹣1),(2,0).
(1)求该抛物线的解析式;
(2)如图①,点P是抛物线上任意一点,过点P作直线l的垂线,垂足为Q,求证:PO=PQ.
(3)请你参考(2)中结论解决下列问题:
(i)如图②,过原点作任意直线AB,交抛物线y=ax2+bx+c于点A、B,分别过A、B两点作直线l的垂线,垂足分别是点M、N,连结ON、OM,求证:ON⊥OM.
(ii)已知:如图③,点D(1,1),试探究在该抛物线上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标;若不存在,请说明理由.

(年四川攀枝花12分)如图,抛物线(a>0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.

(1)请直接写出A、B两点的坐标;
(2)求抛物线的解析式;
(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;
(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号