我们知道,顶点坐标为 的抛物线的解析式为 .今后我们还会学到,圆心坐标为 ,半径为 的圆的方程 ,如:圆心为 ,半径为3的圆的方程为 .
(1)以 为圆心, 为半径的圆的方程为 .
(2)如图,以 为圆心的圆与 轴相切于原点, 是 上一点,连接 ,作 ,垂足为 ,延长 交 轴于点 ,已知 .
①连接 ,证明: 是 的切线;
②在 上是否存在一点 ,使 ?若存在,求点 的坐标,并写出以 为圆心,以 为半径的 的方程;若不存在,请说明理由.
如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点).
(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1;
(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;
(3)线段B1C1变换到B1C2的过程中扫过区域的面积为.
化简:.
解不等式:,并把解集表示在数轴上.
如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.
已知:二次函数y=ax2+bx-2的图象经过点(1,0),一次函数图象经过原点和点(1,-b),其中a>b>0且a、b为实数.
(1)求一次函数的表达式(用含b的式子表示);
(2)试说明:这两个函数的图象交于不同的两点;
(3)设(2)中的两个交点的横坐标分别为x1、x2,求|x1-x2|的范围.