游客
题文

某水果店将标价为10元 / 斤的某种水果.经过两次降价后,价格为8.1元 / 斤,并且两次降价的百分率相同.

(1)求该水果每次降价的百分率;

(2)从第二次降价的第1天算起,第 x ( x 为整数)的销量及储藏和损耗费用的相关信息如下表所示:

时间(天)

x

销量(斤)

120 - x

储藏和损耗费用(元)

3 x 2 - 64 x + 400

已知该水果的进价为4.1元 / 斤,设销售该水果第 x (天)的利润为 y (元),求 y x ( 1 x < 10 ) 之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?

科目 数学   题型 解答题   难度 中等
知识点: 一元二次方程的应用 二次函数的应用
登录免费查看答案和解析
相关试题

如图,在边长为1的小正方形组成的网格中,A、B两点均在格点上,且坐标分别为A(3,2);B(1,3).

(1)点B关于y轴对称的点的坐标为
(2)在网格线中描出点A、B,并画出△AOB,若将△AOB向左平移3个单位,再向上平移2个单位得到△A1O1B1,则点A1点坐标为

如图,△ABC中,AB=AC,∠BAC=90°,点D在CB上,连接AD,EA⊥AD,∠ACE=∠ABD.

(1)求证:AD=AE;
(2)若点F为CD中点,AF交BE于点G,求∠AGE的度数.

已知:如图,△AOC≌△BOD. 求证 :△AOD≌△BOC

求x的值:

如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).

(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号