游客
题文

阅读理解:

材料一:若三个非零实数 x y z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 x y z 构成"和谐三数组".

材料二:若关于 x 的一元二次方程 a x 2 + bx + c = 0 ( a 0 ) 的两根分别为 x 1 x 2 ,则有 x 1 + x 2 = - b a x 1 · x 2 = c a

问题解决:

(1)请你写出三个能构成"和谐三数组"的实数    

(2)若 x 1 x 2 是关于 x 的方程 a x 2 + bx + c = 0 ( a b c 均不为 0 ) 的两根, x 3 是关于 x 的方程 bx + c = 0 ( b c 均不为 0 ) 的解.求证: x 1 x 2 x 3 可以构成"和谐三数组";

(3)若 A ( m , y 1 ) B ( m + 1 , y 2 ) C ( m + 3 , y 3 ) 三个点均在反比例函数 y = 4 x 的图象上,且三点的纵坐标恰好构成"和谐三数组",求实数 m 的值.

科目 数学   题型 解答题   难度 中等
知识点: 反比例函数图象上点的坐标特征 倒数 根与系数的关系
登录免费查看答案和解析
相关试题

今年4月20日,四川芦山发生了里氏7.0级大地震,给当地人民造成了巨大的损失,“一方有难,八方支援”,我县某中学全体师生积极捐款,其中九年级的三个班学生的捐款金额如下表:

班级
(1)班
(2)班
(3)班
金额(元)
2000

吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.请根据以上信息,帮助吴老师解决下列问题:
(1)求出(2)班与(3)班的捐款金额各是多少元;
(2)求出(1)班的学生人数.

如图,已知反比例函数的图像与一次函数的图像交于两点A(-2,1)、B(,-2).

(1)求反比例函数和一次函数的解析式;
(2)若一次函数的图像与轴交于点C,求△AOC(O为坐标原点)的面积.

学校为了了解全校3200名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查,问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).

(1)在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学.

分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠ACB=90°、∠BAC=30°,EF⊥AB,垂足为F,连接DF、CF.

(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形;
(3)找出图中除△ACD、△ABE以外的等边三角形,并说明理由.

关于的一元二次方程-4=0有两个不相等的实数根,请你选择一个的整数值,并求出方程的根.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号