如图,在直角坐标系中,直线 y= kx+1( k≠0)与双曲线 相交于点 P(1, m).
(1)求 k的值;
(2)若点 Q与点 P关于直线 y= x成轴对称,则点 Q的坐标是 Q( );
(3)若过 P、 Q二点的抛物线与 y轴的交点为 ,求该抛物线的函数解析式,并求出抛物线的对称轴方程.
计算:
(1)
(2)
如图,已知BE⊥AD,CF⊥AD,且BE=CF.
(1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论.
(2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件.
如图,菱形ABCD中, E、F分别是CB、CD上的点,BE=DF.
(1)求证:AE=AF.
(2)若AE垂直平分BC,AF垂直平分CD求证: △AEF为等边三角形.
如图,矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.
山东省第23届运动会在济宁隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.
(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;
(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.