如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,点 为坐标原点,菱形 的顶点 在 轴的正半轴上,顶点 的坐标为 .
(1)求图象过点 的反比例函数的解析式;
(2)求图象过点 , 的一次函数的解析式;
(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量 的取值范围.
如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度 (单位: 与飞行时间 (单位: 之间具有函数关系 ,请根据要求解答下列问题:
(1)在飞行过程中,当小球的飞行高度为 时,飞行时间是多少?
(2)在飞行过程中,小球从飞出到落地所用时间是多少?
(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?
如图, 为 的直径,点 在 上, 于点 ,且 平分 ,求证:
(1)直线 是 的切线;
(2) .
如图1,经过原点 的抛物线 与 轴交于另一点 , ,在第一象限内与直线 交于点 .
(1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点 ,满足以 , , 为顶点的三角形的面积为2,求点 的坐标;
(3)如图2,若点 在这条抛物线上,且 ,在(2)的条件下,是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图,将矩形纸片 沿直线 折叠,顶点 恰好与 边上的动点 重合(点 不与点 , 重合),折痕为 ,点 , 分别在边 , 上,连接 , , , 与 相交于点 .
(1)求证: ;
(2)①在图2中,作出经过 , , 三点的 (要求保留作图痕迹,不写做法);
②设 ,随着点 在 上的运动,若①中的 恰好与 , 同时相切,求此时 的长.