已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式 (其中a,b,c是三角形的三边长, ,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴
∴
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
根据上述材料,解答下列问题:
如图,在△ABC中,BC=5,AC=6,AB=9
(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.
如图,在 中, , 为 边上的一点,以 为直径的 交 于点 ,交 于点 ,过点 作 交 于点 ,交 于点 ,过点 的弦 交 于点 不是直径),点 为弦 的中点,连结 , 恰好为 的切线.
(1)求证: 是 的切线.
(2)求证: .
(3)若 , ,求四边形 的面积.
如图,在平面直角坐标系中,已知点 的坐标为 ,点 的坐标为 ,连结 ,以 为边在第一象限内作正方形 ,直线 交双曲线 于 、 两点,连结 ,交 轴于点 .
(1)求双曲线 和直线 的解析式.(2)求 的面积.
端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对 、 、 、 四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:
(1)本次参加抽样调查的居民有 人.
(2)喜欢 种口味粽子的人数所占圆心角为 度.根据题中信息补全条形统计图.
(3)若该居民小区有6000人,请你估计爱吃 种粽子的有 人.
(4)若有外型完全相同的 、 、 、 粽子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是 种粽子的概率.
阅读以下材料,并解决相应问题:
小明在课外学习时遇到这样一个问题:
定义:如果二次函数 , 、 、 是常数)与 , 、 、 是常数)满足 , , ,则这两个函数互为“旋转函数”.求函数 的旋转函数,小明是这样思考的,由函数 可知, , , ,根据 , , ,求出 , , 就能确定这个函数的旋转函数.
请思考小明的方法解决下面问题:
(1)写出函数 的旋转函数.
(2)若函数 与 互为旋转函数,求 的值.
(3)已知函数 的图象与 轴交于 、 两点,与 轴交于点 ,点 、 、 关于原点的对称点分别是 、 、 ,试求证:经过点 、 、 的二次函数与 互为“旋转函数”.
新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买 、 两种花苗.据了解,购买 种花苗3盆, 种花苗5盆,则需210元;购买 种花苗4盆, 种花苗10盆,则需380元.
(1)求 、 两种花苗的单价分别是多少元?
(2)经九年级一班班委会商定,决定购买 、 两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆 种花苗, 种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?