已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式 (其中a,b,c是三角形的三边长, ,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴
∴
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
根据上述材料,解答下列问题:
如图,在△ABC中,BC=5,AC=6,AB=9
(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.
已知x=1是方程的解.
(1)求m的值;
(2)试求关于方程的解.
已知多项式A,B,其中A=﹣2xy+1,小明在计算A﹣B时,由于粗心把A﹣B看成了A+B求得结果为﹣3
﹣2xy﹣1.
(1)请你帮小明算出A﹣B的正确结果;
(2)当x=,y=-2时,求A﹣B的值.
解方程:
(1)4-x=3(2-x)
(2)
化简:
(1)
(2)3(4x2-3x+2)-2(1-4x2-x)
如图,直线l:3交x、y轴分别为A、B两点,C点与A点关于y轴对称。动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.
(1)点A坐标是 ,点B的坐标 ,BC= .
(2)当点P在什么位置时,△APQ≌△CBP,说明理由。
(3)当△PQB为等腰三角形时,求点P的坐标。