网络技术的发展对学生学习方式产生巨大的影响,某校为了解学生每周课余利用网络资源进行自主学习的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题
组别 |
学习时间x(h) |
频数(人数) |
A |
0<x≤1 |
8 |
B |
1<x≤2 |
24 |
C |
2<x≤3 |
32 |
D |
3<x≤4 |
n |
E |
4小时以上 |
4 |
(1)表中的n= ,中位数落在 组,扇形统计图中B组对应的圆心角为 °;
(2)请补全频数分布直方图;
(3)该校准备召开利用网络资源进行自主学习的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.
如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度数。
如图,已知∠A=∠D,AB="DE,AF=DC" ,请问图中有哪几对全等三角形?并任选其中一对给予证明。
如图,△ABC中,∠B=50°,AD平分∠BAC, ∠ADC=80°,求∠C的度数。
如图(1),点A、B、C在同一直线上,且△ABE, △BCD都是等边三角形,连结AD,CE.
(1)△BEC可由△ABD顺时针旋转得到吗?若是,请描述这一旋转变换过程;若不是,请说明理由;
(2)若△BCD绕点B顺时针旋转,使点A,B,C不在同一直线上(如图(2)),则在旋转过程中:
①线段AD与EC的长度相等吗?请说明理由.
②锐角的度数是否改变?若不变,请求出
的度数;若改变,请说明理由.
(注:等边三角形的三条边都相等,三个角都是60°)
如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC。
(1)猜想OB与OC的数量关系,并说明理由.
(2)若∠BAC=60°,问△ADC经过怎样的变换能与△AEB重合?