已知,抛物线经过点
,
(1)求抛物线的解析式;
(2)如图1,抛物线上存在点,使得
是以
为直角边的直角三角形,请直接写出所有符合条件的点
的坐标: .
(3)如图2,直线经过点
,且平行与
轴,若点
为抛物线上任意一点(原点
除外),直线
交
于点
,过点
作
,交抛物线于点
,求证:直线
一定经过点
.
在四边形 中, ,对角线 平分 .
(1)如图1,若 ,且 ,试探究边 、 与对角线 的数量关系并说明理由.
(2)如图2,若将(1)中的条件“ ”去掉,(1)中的结论是否成立?请说明理由.
(3)如图3,若 ,探究边 、 与对角线 的数量关系并说明理由.
如图,以 边为直径的 经过点 , 是 上一点,连接 交 于点 ,且 , .
(1)试判断 与 的位置关系,并说明理由;
(2)若点 是弧 的中点,已知 ,求 的值.
某公司从2013年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:
年 度 |
2013 |
2014 |
2015 |
2016 |
投入技改资金 (万元) |
2.5 |
3 |
4 |
4.5 |
产品成本 (万元 件) |
7.2 |
6 |
4.5 |
4 |
(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;
(2)按照这种变化规律,若2017年已投入资金5万元.
①预计生产成本每件比2016年降低多少万元?
②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).
如图,在水平地面上有一幢房屋 与一棵树 ,在地面观测点 处测得屋顶 与树梢 的仰角分别是 与 , ,在屋顶 处测得 .若房屋的高 米,求树高 的长度.
为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:
组别 |
分数段(分 |
频数 |
频率 |
组 |
|
30 |
0.1 |
组 |
|
90 |
|
组 |
|
|
0.4 |
组 |
|
60 |
0.2 |
(1)在表中: , ;
(2)补全频数分布直方图;
(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;
(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中 、 两组学生的概率是多少?并列表或画树状图说明.