游客
题文

阅读下面材料:

在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点EFGH依次连接起来得到的四边形EFGH是平行四边形吗?

小敏在思考问题是,有如下思路:连接AC

结合小敏的思路作答

(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决以下问题:

(2)如图2,在(1)的条件下,若连接ACBD

①当ACBD满足什么条件时,四边形EFGH是菱形,写出结论并证明;

②当ACBD满足什么条件时,四边形EFGH是矩形,直接写出结论.

科目 数学   题型 解答题   难度 中等
知识点: 中点四边形 四边形综合题
登录免费查看答案和解析
相关试题

高淳区去年螃蟹放养面积为20万亩,每亩产量为40kg,为满足市场需要,今年该区扩大了放养面积,并且全部放养了高产的新品种螃蟹.已知今年螃蟹的总产量为1500万kg,且螃蟹放养面积的增长率是亩产量的增长率的2倍,求该区今年螃蟹的亩产量.

如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.

(1)求证:CF为⊙O的切线;
(2)若⊙O的半径为cm,弦BD的长为3cm,求CF的长.

已知二次函数y=ax2+bx+c中自变量x和函数值y的部分对应值如下表:

x

-1
0
1
2
3

y

10
5
2
1
2

(1)求该二次函数的函数关系式;
(2)在所给的直角坐标系中画出此函数的图象;
(3)求出y≤10时自变量x的取值范围(可以结合图象说理).

如图,一堤坝的坡角∠ABC=60°,坡面长度AB=24米(图为横截面).为了使堤坝更加牢固,需要改变堤坝的坡面,为使得坡面的坡角∠ADB=50°,则应将堤坝底端向外拓宽(BD)多少米?(结果精确到0.1米)(参考数据:≈1.73,sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)

如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.

(1)求证:四边形ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号