【问题情景】
利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.
例如:张老师给小聪提出这样一个问题:
如图1,在△ ABC中, AB=3, BC=6,问△ ABC的高 AD与 CE的比是多少?
小聪的计算思路是:
根据题意得: S △ ABC= BC• AD= AB• CE.
从而得2 AD= CE,∴ =
请运用上述材料中所积累的经验和方法解决下列问题:
(1)【类比探究】
如图2,在▱ ABCD中,点 E、 F分别在 AD, CD上,且 AF= CE,并相交于点 O,连接 BE、 BF,
求证: BO平分角 AOC.
(2)【探究延伸】
如图3,已知直线 m∥ n,点 A、 C是直线 m上两点,点 B、 D是直线 n上两点,点 P是线段 CD中点,且∠ APB=90°,两平行线 m、 n间的距离为4.求证: PA• PB=2 AB.
(3)【迁移应用】
如图4, E为 AB边上一点, ED⊥ AD, CE⊥ CB,垂足分别为 D, C,∠ DAB=∠ B, AB= , BC=2, AC= ,又已知 M、 N分别为 AE、 BE的中点,连接 DM、 CN.求△ DEM与△ CEN的周长之和.
已知方程组与
有相同的解,求m2-2mn+n2的值
小颖家去年的饮食支出3600元,教育支出1200元,其他支出7200元,小颖家今年的这三项支出依次比去年增长了9%,30%,6%,请你帮小颖算一算今年的总支出比去年增长的百分数是多少?
小明这样帮她算的:(9%+30%+6%)=15%
你认为他这样计算对吗?为什么?
有长为L的篱笆,利用它和房屋的一面墙围成如图形状的园子,宽为t。
(1)用关于L、t的代数式表示园子的面积。
(2)当L=100m,t=30m时,求园子的面积。
如图,四边形ABCD的边AB在X轴上,A与O重合,CD∥AB,D(0,),直线AE与CD交于E,DE=6。以BE为折痕,把点A翻恰好与点C重合;动点P从点D出发沿着D→C→B→O路径匀速运动,速度为每秒4个单位;以P为圆心的⊙P半径每秒增加
个单位,当点P在点D处时,⊙P半径为
;直线AE沿y轴正方向向上平移,速度为每秒
个单位;直线AE、⊙P同时出发,当点P到终点O时两者都停止,运动时间为t;
(1) 求点B的坐标;
(2)求当直线AE与⊙P相切时t的值;
(3) 在整个运动过程中直线AE与⊙P相交的时间共有几秒?(直接写出答案)