在平面直角坐标系 xOy中,抛物线 y= ax 2+ bx+2过点 A(﹣2,0), B(2,2),与 y轴交于点 C.
(1)求抛物线 y= ax 2+ bx+2的函数表达式;
(2)若点 D在抛物线 y= ax 2+ bx+2的对称轴上,求△ ACD的周长的最小值;
(3)在抛物线 y= ax 2+ bx+2的对称轴上是否存在点 P,使△ ACP是直角三角形?若存在直接写出点 P的坐标,若不存在,请说明理由.
作一直线,将下图分成面积相等的两部分(保留作图痕迹).
如图,四边形ABCD是平行四边形,,BD⊥AD,求BC,CD及OB的长.
某中学为了了解全校的耗电情况,抽查了10天中全校每天的耗电量,数据如下表:
千瓦时 |
90 |
93 |
102 |
113 |
114 |
120 |
天数 |
1 |
1 |
2 |
3 |
1 |
2 |
(1)写出上表中数据的众数和平均数.
(2)根据上题获得的数据,估计该校一个月的耗电量(按30天计算).
(3)若当地每千瓦时电的价格是0.5元,写出该校应付电费y(元)与天数(
取正整数,单位:天)的函数关系式.
如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与轴交于点B,且OA=OB,求这两个函数的关系式及两直线与
轴围成的三角形的面积.
“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%,该专业户去年实际生产小麦、玉米各多少吨?