已知二次函数 y= ax 2﹣ bx+ c且 a= b,若一次函数 y= kx+4与二次函数的图象交于点 A(2,0).
(1)写出一次函数的解析式,并求出二次函数与 x轴交点坐标;
(2)当 a> c时,求证:直线 y= kx+4与抛物线 y= ax 2﹣ bx+ c一定还有另一个异于点 A的交点;
(3)当 c< a≤ c+3时,求出直线 y= kx+4与抛物线 y= ax 2﹣ bx+ c的另一个交点 B的坐标;记抛物线顶点为 M,抛物线对称轴与直线 y= kx+4的交点为 N,设 S= S △ AMN﹣ S △ BMN,写出 S关于 a的函数,并判断 S是否有最大值?如果有,求出最大值;如果没有,请说明理由.
已知P(﹣3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.
(1)求b的值;
(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;
(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.
《中学生体质健康标准》规定学生体质健康等级标准为:86分及以上为优秀;76分~85分为良好;60分~75分为及格;59分及以下为不及格.某校抽取八年级学生人数的10%进行体质测试,测试结果如图.
(1)在抽取的学生中不及格人数所占的百分比是;
(2)小明按以下方法计算出所抽取学生测试结果的平均分是:(90+82+65+40)÷4=69.25.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果.
如图,在梯形ABCD中 AB‖DC,DB平分∠ADC,过点A作AE‖BD,交CD的延长线于点E,且∠C=2∠E
求证:梯形ABCD是等腰梯形
如图,若抛物线Y=X2改为抛物线Y= X2+BX+C其他条件不变求矩形ABCD的面积
如图,一块长方形铁皮的长是宽的2倍,四个角各截去一个正方形,制成高是5CM,容积是500CM3的无盖长方体容器,求这块铁皮的长和宽