游客
题文

已知抛物线 y = a x - 1 2 2 - 2 ,顶点为 A,且经过点 B - 3 2 , 2 ,点 C 5 2 , 2

(1)求抛物线的解析式;

(2)如图1,直线 ABx轴相交于点 My轴相交于点 E,抛物线与 y轴相交于点 F,在直线 AB上有一点 P,若∠ OPM=∠ MAF,求△ POE的面积;

(3)如图2,点 Q是折线 ABC上一点,过点 QQNy轴,过点 EENx轴,直线 QN与直线 EN相交于点 N,连接 QE,将△ QEN沿 QE翻折得到△ QEN 1,若点 N 1落在 x轴上,请直接写出 Q点的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

已知:抛物线为常数,且).
(1)求证:抛物线与轴有两个交点;
(2)设抛物线与轴的两个交点分别为左侧),与轴的交点为.
时,求抛物线的解析式;

已知:如图,在Rt△ABC中,∠C=90°, DE分别为AB AC边上的点,且,连结DE.若AC=3,AB=5,猜想DEAB有怎样的位置关系?并证明你的结论.

在△ABC中,∠A=90°,点D在线段BC上,∠EDBCBEDE,垂足为EDEAB相交于点F
(1)当ABAC时,(如图1),
①∠EBF=_______°;
②探究线段BEFD的数量关系,并加以证明;
(2)当ABkAC时(如图2),求的值(用含k的式子表示).

为了预防流感,某校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比,药物释放完毕后,y与t的函数关系式为ya为常数),如图所示,根据图中提供的信息,解答下面的问题:
(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量的取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?

“五一”期间,为了满足广大人民的消费需求,某商店计划用160 000元购进一批家电,这批家电的进价和售价如下表:

(1)若全部资金用来购买彩电和洗衣机共100台,则商家可以购买彩电和洗衣机各多少台?
(2)若在现有资金160 000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算,共有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润=售价-进价)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号